
Any Two Learning Algorithms Are (Almost) Exactly

Identical

David H. Wolpert

NASA Ames Research Center

Mo�ett Field, CA 94035

dhw@ptolemy.arc.nasa.gov

October 4, 2000

Abstract

This paper shows that if one is provided with a loss function, it can

be used in a natural way to specify a distance measure quantifying the

similarity of any two supervised learning algorithms, even non-parametric

algorithms. Intuitively, this measure gives the fraction of targets and train-

ing sets for which the expected performance of the two algorithms di�ers

signi�cantly. Bounds on the value of this distance are calculated for the case

of binary outputs and 0-1 loss, indicating that any two learning algorithms

are almost exactly identical for such scenarios. As an example, for any two

algorithms A and B, even for small input spaces and training sets, for less

than 2e�50 of all targets will the di�erence between A's and B's general-

ization performance exceed 1%. In particular, this is true if B is bagging

applied to A, or boosting applied to A. These bounds can be viewed alter-

natively as telling us, for example, that the simple English phrase \I expect

that algorithm A will generalize from the training set with an accuracy of

at least 75% on the rest of the target" conveys 20,000 bytes of information

concerning the target. The paper ends by discussing some of the subtleties

of extending the distance measure to give a full (non-parametric) di�erential

geometry of the manifold of learning algorithms.

1 Introduction

It has been a long-held goal of the learning community to limn the mathemat-

ical structure underlying supervised learning. This goal would be signi�cantly

1

advanced if we had a model-free geometry of learning, i.e., a geometry that de-

pends only on the behavior of learning algorithms, not on how either they or

target input-output distributions are parameterized. One crucial element of such

a geometry would be a model-free metric, i.e., a non-parametric measure of the

\distance" between (the behaviors of) any two learning algorithms. As demon-

strated in this paper, given a measure of generalization performance (i.e., a loss

function) there is a natural associated choice of such a metric.

As shown below, evaluating this metric for binary outpus and the zero-one

loss function, one �nds that the distance between any two learning algorithms

is almost exactly zero. Given how the metric is de�ned, an immediate corollary

is that only for an extremely small fraction of targets is the di�erence in the

expected generalization performances of two learning algorithms more than van-

ishingly small. This emphasizes just how important prior information about the

target is | unless you restrict the set of allowed targets to an extremely small

set, any pair of algorithms you're considering will perform essentially identically.

Stated di�erently, the amount of information concerning the target implicit in a

simple statement like \My algorithm should perform substantially better than its

opposite on the target" is quite large (i.e., the prior over targets must have very

low entropy for the statement to be true).

To put this in context, one of the least important of the many rami�cations

of the no-free-lunch (NFL) theorems [10] is that averaged over all targets, the

generalization performance of any two algorithms is exactly identical. The result

of this paper adds depth to that rami�cation. It does so by establishing further

that for almost every single target, the generalization error of any two algorithms

A and B are almost exactly identical (for zero-one loss). So in particular, whereas

the NFL theorems tell us (loosely speaking) that if B is boosting applied to A

then B must perform worse than A as often as it beats A, the results of this

paper indicate that it is for only a tiny fraction of the possible targets that the

performance of A and B di�er signi�cantly at all.

Insofar as "intelligence" can be equated with ability to perform inductive in-

ference, these results mean that, considered over all induction problems, there is

very little di�erence between the intelligence of you and your dog. Not only must

your dog outperform you `as often' as vice versa |by the NFL theorems | but

there are precious few problems in which your performances di�er signi�cantly.

Section 2 motivates and de�nes our metric. Section 2 presents our bounds on

intelligence. Section 4 presents a preliminary foray into extending the metric to

specify all other aspects of the geometry of learning, i.e., into providing a full

di�erential geometry. Finally, Section 5 presents a discussion of some of the ways

2

these results might be extended. It also elaborates how these resuls underscore

what is perhaps the most glaring hole in the current theory of supervised learning.

2 The Distance Between Two Learning Algo-

rithms

To have the discussion be of su�ciently broad scope we will employ the Extended

Bayesian Formalism (EBF) [11, 7], introducing its salient aspects as we go. (The

EBF both encompasses and reconciles Bayesian, sampling theory, and COLT anal-

yses of learning, something not possible with any of the other mathematical frame-

work that have been used to analyze supervised learning.) To begin, presume we

have an input and output space, X and Y respectively, and let the random vari-

ables hA and hB be the two hypothesis input-output distributions generated by

our two learning algorithms in response to a (random variable) training set d con-

sisting of m pairs of X � Y values. So the relevant behavior of A and B is �xed

in toto by the two distributions P (hA j d) and P (hB j d). (In the EBF, since

there are random variables for training sets and targets, exactly how a learning

algorithm makes its guesses is irrelevant, as far as generalization performance is

concerned.) Now there are many ways one might measure how di�erent two learn-

ing algorithms A and B are. One, related to information geometry, is to use some

information-theoretic functional of the two conditional distributions specifying the

two algorithms. More formally, in terms of the EBF, we could (for example) note

that P (ha; hB) =
P

d P (hA; hB j d)P (d) =
P

d P (hA j d)P (hB j d)P (d). Using

this we could measure the di�erence between A and B in terms of the mutual

information of P (hA; hB), i.e., the mutual information between the hA and hB

made in response to d's generated in some canonical manner (e.g., by sampling

all d's generated by all possible targets).

If we're given a loss function, another approach presents itself: �nd the two

sets of priors over target input-output distributions f , P (f), for which each of

the algorithms is Bayes-optimal, and then measure the di�erence between those

two sets. (E.g., if each set consisted of a single P (f), one might measure the L2

di�erence between those two P (f)'s, or a symmetrized Kullback-Liebler distance

between them, or some such.) A slight variation is to �nd the P (f)'s that result

in the best performance of the learning algorithms (rather than �nd the P (f)'s

for which the algorithms are the best possible) and compare those.

If we're given a loss function though, then in some senses that function, and

in particular its expectation value, provides a more important measure of how

3

di�erent two learning algorithms are than does some counterfactual optimizing

P (f), or even than do the hypotheses that the learning algorithms produce. This

suggests that neither of the schemes sketched above is the best choice. One way

to use a loss function more directly than those schemes would be to evaluate

the mutual information between the loss of the two algorithms in response to all

d's. However losses are real-valued numbers, so information-theoretic quantities

like mutual information that don't reect how close two loss values are, but only

whether they're identical or not, are not necessarily the most meaningful measure

of the relationship between the loss distributions of the two algorithms.

As an alternative, given a loss function, we can directly apply that function

and evaluate the di�erence between (an appropriate function of) the expected

generalization performances of the two algorithms. In other words, we can evaluate

how di�erently the two algorithms perform on average for o�-training-set (OTS)

points [11, 10]. (Results that are almost identical to those presented in this paper

hold for IID rather than OTS generalization error.) We can then directly use that

di�erence in generalization performances to provide us with our distance measure.
1 The rest of this section presents a formal de�nition of this metric, the metric

that will be investigated in the rest of this paper.

The EBF encompasses non-single-valued input-output hypotheses (i.e., such

hypotheses taking the form of a full conditional distribution P (y j x) rather

than a single-valued function from X to Y) as well as non-single-valued targets.

However here, for simplicity, restrict attention to single-valued hypotheses hA and

hB. Also restrict attention to \vertical" likelihoods P (d j f) = P (dX; dY j f) =
P (dX)P (dY j dX ; f) = P (dX)

Q
i=1;m P (dY (i) j dX(i); f(dX(i))), where dX is the

training set's (ordered) input values, and dY its (correspondingly ordered) output

values [10]. As an example of such a likelihood, to simplify the notation, in this

paper we'll consider single-valued noise-free f , so we can write f as a function

from X to Y rather than a function from X to distributions over Y . This allows

us to write P (dY (i) j dX(i); f(dX(i))) = �(dY (i); f(dX(i)) for any i 2 f1; :::; mg,
where �(A;B) is the generalized Kronecker delta function, which equals 1 if its

arguments are equal, 0 otherwise. (This restriction on f doesn't change the results

presented below; it just reduces the notational complexity.) We will also assume

a uniform sampling distribution over X, so that P (dX) is uniform over all dX .

(While we do this primarily for convenience, it also seems quite natural for an

investigation of the geometric structure relating learning algorithms.)

1This approach to de�ning the distance between learning algorithms is similar to the approach

used to de�ne an inner product between learning algorithms and posterior distributions over

targets. See [11].

4

Let n be the number of elements in our input space (assumed �nite for sim-

plicity, as is the output space). As mentioned above, all that is relevant (as far as

generalization is concerned) concerning learning algorithm A is the distribution

P (hA j d). Accordingly, due to the �niteness of X and Y , any learning algo-

rithm is a (�nite-dimensional) vector living in a space of Cartesian products of

unit simplices [12]. Label the manifold of that Cartesian product as S.

De�ne the generalization performance random variables CA(f; d) � E(c j
f; d; A) and CB(f; d) � E(c j f; d; B). Here the function c(f; h; d) is expected

o�-training set error for zero-one loss and our uniform sampling distribution:

c(f; h; d) �
P

x62d
X

[1��(h(x);f(x))]

(n�m0)
, m0 being the number of distinct pairs in d [12]. We

require that the learning algorithms have no direct access to the target (although

they may make assumptions concerning the target), so that P (h j d; f) = P (h j d).
Accordingly, for example, CA(f; d) =

P
hA P (hA j d) c(f; hA; d).

We want to have CA and CB provide us with our measure of the distance be-

tween A and B, i.e., provide us with our metric. Since metrics must be symmetric,

we want our metric to be a function of jCA � CBj, K(jCA � CBj), rather than
(for example) CA � CB. Now for the purposes of this paper, we want our metric

to reect the full behavior of the algorithms, not just their behavior in response

to one particular d. (Otherwise our metric would in e�ect be indexed by that

d.) So we have to let d vary. Accordingly, we're led to consider CA and CB as

depending on f and m, as in conventional sampling theory statistics, i.e., we're

led to consider E(K(jCA�CBj) j f;m). This is the expected di�erence between

the generalization performances of the two algorithms for all training sets of size

m sampled from the target f .

However just as for current purposes we don't want our metric to be indexed by

d, we also don't want it to be indexed by f . Indeed, a natural quantity to consider

concerning E(K(jCA � CBj) j f;m) is the fraction of f for which it equals or

exceeds some value �, as a function of �. A synopsis of such fractions, taking

into account all possible �, is the average over f of E(K(jCA � CBj) j f;m),

D(m;A;B). It is this synopsis of the di�erence between the two algorithms A

and B that provides us with our measure for how close A and B are.

More precisely, as with the conventional Lp norm of real analysis, to get a

distance measure that obeys the triangle inequality (as all metrics must) we take

K(:) to be a positive monomial of the magnitude of its argument and take as our

distance measure D(m;A;B) � K�1[E(K(CA�CB) j m)]. We can write this in

full as

5

D(m;A;B) = K�1[
X

f;d

P (d; f j m) KfCA(f; d)� CB(f; d)g] : (1)

Here the average over f will be taken to be uniform, since this seems most

natural in an investigation of the geometric structure of learning algorithms. (The

extension to the case of non-uniform P (f) is the subject of future work.)

To put this in perspective, recall that the NFL theorems tell us (among many

other things) that E(CA � CB j m) = 0. So in essence, D(m;A;B) is looking

at higher moments of CA � CB. These moments must be non-zero in general; if

they aren't, then for every f separately the two algorithms have exactly the same

d-averaged generalization error as one another.

Extensions of the results of this paper to non-uniform sampling distributions,

non-binary output spaces, di�erent loss functions, non-single-valued hypotheses

and/or targets (i.e., noise), regression rather than classi�cation, etc. are all

straight-forward. However they are beyond the scope of this paper.

3 Main Results

The simplest functionK(:) to consider is the squaring function, for whichD(m;A;B) =q
E((CA � CB)2 j m) where the average over f is uniform. An upper bound on

this D can be calculated in closed form. Moreover, via Chebychev's inequality,

that upper bound allows us to bound the fraction of all f such that the the

di�erence in generalization error of two algorithms exceeds �, as a function of �.

To see all this, evaluate

E(K(CA � CB) j f;m) =
X

d

P (djf) [
X

hA;hB

P (hA; hBjd)fc(f; hA; d)� c(f; hB; d)g]2

�
X

d;hA;hB

P (djf)P (hA; hBjd) [c(f; hA; d)� c(f; hB; d)]
2

=
X

d;hA;hB

P (djf)P (hAjd)P (hBjd) [c(f; hA; d)� c(f; hB; d)]
2 ; (2)

where the inequality follows from the convexity of the squaring operator.

To evaluate the associated value of D2, pull its outer sum over f inside the W 's

sums over d, hA, and hB. Next plug in our likelihood and de�nition of c and split

f into the union of the two sets f(dX) and f(X n dX). In addition use the fact

that c(f; h; d) only depends on the values of f on X n dX , not on all of f . Doing

6

all this reduces our bound to

P
d;hA;hB;f(dX) �(dY ; f(dX)) P (dX) P (hA j d) P (hB j d)�

X

f(XndX)

[c(f; hA; d) � c(f; hB; d)]
2 ; (3)

all divided by the number of target functions. In turn, for any dX , we can write

that number of target functions as the product [
P

f(dX) 1] [
P

f(XndX) 1].

Consider any d, f(dX), hA and hB in the outer sum. Let N(hA; hB; d) (or just

N , for short) be the associated set of elements in X n dX for which hA and hB

disagree. (At the extreme, there are pairs of algorithms for which N is always

all elements in X n dX , no matter what d is.) Now the values of f(X n dX) on
the elements in X n dX nN are irrelevant, since loss on those elements for hA will

equal the loss for hB (whatever those loss values are), and will therefore cancel

out when we subtract the two c's. So we can replace the summation operatorP
f(XndX) with

P
f(N), if we multiply by 2jXndXnN j.

Writing 2Xnd
X
nNP

f(Xnd
X

1
= 1

sumf(N)1
now leads us to consider the term

P
f(N)

[c(f;hA;d)�c(f;hB ;d)]
2

P
f(N)

1
.

A moment's thought shows that this is equal to (the expectation of) the square of

the di�erence between the number of heads and the number of tails in jN j ips of
an unbiased coin, all divided by jX n dX j2 (since the two c's are each normalized

to jX n dX j). Neglecting that division for the moment, the expected di�erence is

the expectation of [nh�nt]2 = n2
h+n

2
t �2nh(jN j�nh), where nh is the number of

heads and nt the number of tails out of the jN j ips. When averaged this equals

4E(n2
h) � jN j2 (E(n2

t) = E(n2
h), and E(nh) = jN j=2). The average of n2

h for jN j
samples of a Bernoulli process is just jN j=4 + jN j2=4. So up to the overall divisor,
our inner-most sum over f(N) is just jN j.

Therefore
P

f(XndX)[cA(f; hA; d)�cB(f; hB; d)]2, divided by
P

fndX 1, is
jN j

jXndX j
2 �

1=jX n dX j. (Recall that the 2jXndXnN j term gets cancelled by an identical term

from the
P

f(XndX) 1 contribution to the overall normalization term
P

f 1.) Note

that this bound holds independent of hA and hB, and therefore independent of

our learning algorithms, P (hA j d) and P (hB j d). As a result of this, our entire

expression (including the normalization constant) is bounded above by

X

dX ;f(dX)

P (dX)

jX n dX j 2m
0 =

X

dX

P (dX)

jX n dX j
< 1=(n�m) : (4)

(By our uniform sampling distribution, P (dX) is independent of dX .) Accordingly,

since it is the square root of this quantity, D is bounded above by 1=
p
n�m.

Notice that by the NFL theorems, the expected value of CA�CB = 0. Accord-

ingly, D is the standard deviation of the distribution of values of CA � CB, the

7

di�erence in generalization performance of our two algorithms. Moreover we can

apply Chebychev's inequality to determine that the fraction of targets f for which

E(jCA � CBj j f;m) > � is bounded above by (D=�)2. By our result for D, this

bound is in turn bounded above by 1 = [(n � m)�2]: the fraction of f for which

E(jCA � CBj j f;m) > � is bounded above by 1 = [(n � m)�2]. Alternatively,

we can use our result for D to bound the value a particular Bayesian quantity

takes on under a uniform prior P (f): the fraction of training sets d such that

E(jCA � CBj j d) > �) is bounded above by 1 = [(n�m)�2]. 2

Notice though that the probability that nh � nt = z is simply the probability

that in jN j ips, nh = (jN j+z)=2. In other words, it's Bernoulli distributed. This

means we don't have to examine the distribution of the squares of z to perform

closed-form calculations; we can examine the distribution of jzj directly. Indeed,
we can form a tighter bound on our fraction of targets by using K(z) = jzj. For
this choice, W directly gives us the di�erence in generalization performance of A

and B, so the fraction of all f for whichW (f;m;A;B) exceeds � is just the fraction

of f for which the (magnitude of the) di�erence in generalization performance of

A and B exceeds �. Employing the Hoe�ding inequality to our coin-ip expression

for this choice of W , we derive

P (f : E(jCA � CBj j f; m) � �)) < 2e��
2(n�m)=2 : (5)

Again, we can instead use our bound to derive a Bayesian result: for uniform

P (f),

P (d : E(jCA � CBj j d) � �)) < 2e��
2(n�m)=2 : (6)

As a simple example, take n = 106 (say 3 input dimensions, each of which can

take on 100 values), and m = 1,000. This is a relatively small input space and

training set. Nevertheless, in this situation, the fraction of targets on which the

expected o�-training-set 0-1 losses of any two algorithms di�er from one another

by more than one percent is less than 2e�49:95, which essentially equals 2e�50.

As another example, if in the same situation we expect that our favorite learn-

ing algorithm A has an expected generalization accuracy of at least 75%, that

2Given two learning algorithms A and B and some �, in general there will both be priors

P (f) for which the quantity P (d : E(jCA � CB j j d) > �) is larger than it is for a uniform

prior, and P (f) for which it is smaller. (N.b. for non-uniform P (f) we can no longer equate

the fraction of all d with the probability of some d, and must accordingly be careful to talk

exclusively in terms of probabilities of d's rather than fractions of them.) For example, if A

= falways guess the output y 2 Y = 0, regardless of d and the query point q 2 Xg and B =

falways guess y = 1 regardless of d and qg and if in addition P (f) is the bi-modal distribution

(1=2)�(f; fy = 1 8xg) + (1=2)�(f; fy = 0 8xg), then the probability of a d such that jCA �CB j

= 1 is 1.

8

means that the algorithm B that always guesses the opposite of A has accuracy

of at most 25%. Therefore the di�erence in accuracies exceeds 50%, and we have

implicitly restricted f to a set consisting of 2e�125;000 of all f . That corresponds

to approximately 20,000 bytes of information concerning our target. The little bit

of English we used to describe the target su�ciently so that we believed that our

algorithm would get at least 75% right conveys 20,000 bytes. This information re-

ects our prior knowledge concerning targets; the calculation presented here gives

an inkling of just how much information is in that prior knowledge. Indeed, let us

say that the learning algorithm produces trees, and let me say to you that \the

target can be well-modeled by a shallow tree". Let's suppose that you can use that

information to improve the algorithm's performance by another 5%. This results

in a di�erence in performance (between your algorithm and the opposite-guessing

algorithm) of 60%, and therefore increases the amount of information by a factor

of 36/25. In other words, the simple phrase \the target can be well-modeled by a

shallow tree" increases our information by about 8,000 bytes.

To provide a scale for these results, note that by the NFL theorems, E(C j m)

is independent of the learning algorithm for the uniform P (f) considered here.

Accordingly, to evaluate E(C j m) we can pick the algorithm that always, for

any d, picks a hypothesis h randomly according to a uniform distribution over the

space of all possible hypotheses. Clearly for any particular f the associated OTS

generalization error has to be 1/2, and therefore that must also be the f -averaged

error. Accordingly, for the scenario considered in this paper, E(C j m) = 1=2, for

any learning algorithm.

Now since the bounds derived in this paper apply to any two learning algorithms

A and B, they apply in particular when B is this randomly-guess-h algorithm.

In turn, that algorithm has expect error equal to that of algorithm A (by NFL).

Accordingly, the quadratic K(:) bound gives the standard deviation of the OTS

generalization error of any learning algorithm A. Similarly, our bound for absolute

value K(:) tells us that for any learning algorithm A, the fraction of f for which

the associated expected generalization error di�ers from its f -averaged value by

more than � is less than 2e��
2(n�m)=2. So the examples above demonstrate that as

soon as � is signi�cant on the scale of that f -averaged value (i.e., on the scale of

1/2), that fraction of f is tiny. For very exceedingly few f does expected error

di�er signi�cantly from its f -averaged value.

To see what this means geometrically, view learning algorithms as vectors

C(f; d) with components indexed by (f; d) pairs. Then the NFL theorems state

that all learning algorithms live on a simplex (for vertical likelihoods and the sort

of loss functions considered in this paper). There are many aspects of the distri-

9

bution of learning algorithms across that simplex and its dependence on c(:; :; :)

that one might be interested in (e.g., the symmetries of that distribution). In

particular, the results of this paper tell us that for any two learning algorithm

vectors on that simplex, ~A and ~B, for only very few of the components i will the

value of Ai di�er substantially from the value of Bi.

4 Di�erential Geometry of Learning Algorithms

In general, our D need not be a full metric. Given that i) the triangle inequality

is obeyed by our D; that ii) D is symmetric; and that iii) D(m;A;A) = 0 for any

algorithm A, the remaining feature to check is whether iv) it is always true that

D(m;A;B) = 0 implies that A = B. When (iv) holds we have a proper metric;

when it does not, we instead have a distance measure of the sort encountered in

relativity [8]. 3

A simple example of when (iv) does not hold occurs when m = 1 and n = 3.

For any particular dX , have A guess uniformly randomly between two associated

X�Y functions. The �rst function has o�-training set Y values (in some arbitrary

canonical order) (1, 0). The second function has OTS Y values (0, 1). (Values

of the two functions on the training set are irrelevant.) Have B also always guess

randomly between two dX -speci�ed functions, but have those functions have as

their OTS Y values the two sets (1, 1) and (0, 0). Then even though A 6= B, both

CA and CB = 1/2, regardless of f or d, and therefore D(1; A; B) = 0.

Interestingly, although (iv) isn't always met, if our learning algorithms are both

deterministic (i.e., always produce the same hypothesis in response to the same

training set)) and f is single-valued, then we do indeed have a full metric. To see

this �rst note that since the support of P (f) is all f , for our likelihoodD(A;B) = 0

implies that CA = CB for every f and every d that lies on that f . So for every

dX and f(X n dX), the hA and hB generated from training on d = (dX ; f(dX))

must agree with f(X n dX) just as often as each other. This is impossible unless

hA(X ndX) = hB(X ndX). Now without loss of generality, when there is no noise,

we can restrict attention to learning algorithms that reproduce the training set

exactly (there being no noise, any other algorithm is nonsensical). Accordingly, we

see that the hypothesis input-output function produced by algorithmA in response

to any training set d must be identical to the hypothesis function produced by

algorithm B in response to that d, as claimed.

3In relativity the di�erential geometry is always locally governed by the Minkowski metric,

which means in particular that any two points in space-time are separated by a distance of 0

even if they are distinct, so long as they are connected by a light-ray.

10

There is another way to ensure that (iv) is met, which is to change how we

characterize algorithms. Formally, rather than as a full P (h j d), we reduce our de-
scription of a learning algorithm to its associated C(f; d) =

P
h P (h j d)c(f; h; d).

D can be written in terms of CA(f; d) and CB(f; d) rather than P (hA j d) and
P (hB j d). Moreover, so long as P (d; f j m) does not exactly equal 0 for any d and

f , it follows immediately that D(m;A;B) = 0 implies that CA(f; d) = CB(f; d).

So if we work in the space of C(f; d) (i.e., if we apply the non-invertible mapping

replacing each P (h j d) with its associated C(f; d)), we have a full and proper

metric, meeting all conditions (i) through (iv).

The metric on a space does not fully specify the geometry of that space and the

associated quantities like the curvature of the underlying space, the equation for

geodesics across the space, etc. Somewhat confusingly though, the term `metric'

as commonly used can refer either to a distance measure like D, or instead to

a di�erential geometry \metric" g, a quantity that does specify the geometry of

the underlying space. Formally, such a g is a smoothly varying bilinear form4

mapping any two vectors in a tangent vector space to the reals, one such form

for the tangent space of each point on a manifold M . In contrast, a metric like

D speci�es a distance between any two points in some space. In general, such

a quantity is even de�ned if the underlying space has no relation to a manifold

[5, 8]. Accordingly, distinguish it from the other kind of metric, the di�erential

geometry \metric" will henceforth be referred to as a `bilinear �eld' (with it being

implicit that that �eld varies smoothly over an underlying manifold).

In this paper, to help relate our metric to a bilinear �eld, we will express that

metric as relating points on a manifold. So the �rst thing we must do is de�ne

that manifold which underlies both our metric and bilinear �eld. Since our metric

relates learning algorithms, one natural choice for that manifold is the set S of

possible P (h j d). However to have property (iv) be met, for now we will instead

de�ne the manifold by viewing learning algorithms in terms of the associated C's.

(This is similar to how we originally found it appropriate to de�ne the metric in

terms of di�erences of C's rather than in terms of information theoretic distances

between P (h j d)'s.) Formally, the manifold M over which our metric will be

de�ned is the set of possible (f; d)-indexed vectors C(f; d).

Having both our measure D and our bilinear form g be de�ned voer the same

manifold does not fully �x their relation. Formally, our D can be viewed as

mapping pairs of points in M to the reals. However any bilinear �eld is instead

a set of mappings, each taking pairs of vectors to reals, one such mapping for

4A bilinear form, sometimes called a non-degenerate sesquilinear product, is an inner product

just without the requirement that the image of the product be non-negative.

11

the tangent space of every point on M . These two quantities concern di�erent

mappings, operating over di�erent spaces.

Conventionally in di�erential geometry, the metric and the bilinear �eld are

related in the de�nition of in�nitesimal path length. The basic idea starts with

the fact that, by de�nition of manifold, surrounding any point u 2M there must

be a neighborhood N(u) of points in M that is continuously bijectively mapped

(via a coordinate system (:)) into E(u), a (perhaps in�nitesimal) subregion of a

Euclidean space. The tangent space at u, as expressed in the coordinate system

 (:), is the set of all vectors that are tangent at (u) to (the E(u)-image of) a

path in M that passes through u. That tangent space is isomorphic to E(u), and

we can use that space to relate any two points u0 and u00 such that (u); (u0),

and (u00) are in�nitesimally close (and therefore both in N(u). We do this by

writing in the usual way (u0) = (u00) + v for a tangent vector v.

This allows us to de�ne the distance from u0 to u00 in terms of the norm of v,

which can in turn be de�ned using inner products. Formally, we take the square

of the path length for the in�nitesimal path from (u0) to (u00) | the square of

the value given by the metric for the distance between those two points on M |

to be the square of the inner product of the tangent vector v with itself, where

that inner product is given by g(u), the bilinear �eld evaluated at u. Note that

we cannot do this for arbitrary metrics. The metric must be of a particular form

for any points u0 and u00 in�nitesimally close to one another | it must be a norm-

induced metric, with the norm in turn being induced by an inner product. Note

also that it is only because u0 and u00 are in�nitesimally close to u and because g

is assumed smoothly varying that we can uniquely write an associated g(u). This

approach cannot be used for non-in�nitesimal v. This means in particular that

while this approach can be used to go from a metric to a bilinear �eld, it cannot

be used to uniquely go from a bilinear �eld to a metric over the entire manifold.

In general, one must specify a path of integration connecting any two points on

the manifold to evaluate a distance between those points by means of a bilinear

�eld.

Writing it out, with R(:; :) the square of the metric giving distances between

pairs of points on M , we must be able to write R(u0; u00) =
P

i;j[g(u)]ijv
ivj, where

the matrix g(u)ij is our putative bilinear �eld evaluated at u and expressed in

the coordinate system , and the upper indices on v delineate its component

values in the coordinate system : vi � [(u0)]i � [(u00)]i. So long as g(u)ij is

non-degenerate (i.e., has non-zero determinant) and smoothly varying with u, it

meets all the requirements of a bilinear �eld, so that we have indeed gone from

a metric to a bilinear form. To evaluate g(u) in the coordinate system, choose

12

vi = ��ip + ��iq. Then
P

i;j[g(u)]ijv
ivj = �2[g(u)]pp + �2[g(v)]qq + 2��[g(u)]pq.

So as long as both �1 and R(:; :) are doubly di�erentiable at u, we can write

[g(u)]pq =
1
2

@2

@�@�
R[�1(v + (u)); u]j�=�=0.

For us, D(m;A;B) = K�1f
P

f;d P (d; f j m)K[CA(f; d)�CB(f; d)]. For quadratic

K(:), this is explicitly in the general form of a loss-induced metric, with u0 and

u00 given (in our coordinate system) by two in�nitesimally close C(f; d)'s, and gij

given by P (d; f j m). Furthermore, so long as there is no f and d for which P (f; d)

equals zero exactly, that g(u)ij is non-degenerate. Note that this g(u)ij is explic-

itly independent of position on the manifold, i.e., it does not vary with changes

to CB(f; d). Therefore, trivially, it is a smoothly varying function of position on

the manifold, and so meets all the formal requirements for a bilinear �eld.

Because our bilinear �eld is independent of position on the manifold, our space

is at (the Christo�el symbols all vanish). In addition, that bilinear �eld is di-

agonal in our coordinate system, by inspection (we don't have a double sum over

(f; d) pairs). Finally, for the uniform P (f) and P (dX) considered here, P (f; d) is

uniform. So the underlying manifold is actually Euclidean, for our P (f; d). For

other noise processes, sampling distributions, and/or priors over targets, in general

the manifold will be non-Euclidean. Of course, in general all of this would vary

if we changed K(:) or in some other way altered our metric. In particular, such

alternations could result in non-at geometries, in which geodesics are curved.

As an alternative to the foregoing, we could consider the case where the under-

lying manifold M is the set of (h � d) indexed vectors P (h j d). For this choice

of underlying manifold property (iv) of a metric is violated for our D. On the

other hand, now the vector characterizing a particular learning algorithm will not

vary if we change the choice of loss function c(:; :; :), i.e., learning algorithms and

loss functions aren't conated. For this choice of underlying manifold and for

quadratic K(:) we can directly expand

K[D(m;A;B)] =
X

(h;d);(h0;d0)

g(h;d);(h0;d0) [A(h;d) � B(h;d)] [A(h0;d0) � B(h0;d0)] ; (7)

where Ah00;d � P (hA = h00 j d) and similarly for Bh00;d, and where g can be

written in explicitly symmetric form as

g(h;d);(h0;d0) �
X

f

c(f; h; d) c(f; h0; d0) �(d0; d)
q
P (d; f j m)P (d0; f j m) : (8)

Whether this g is non-degenerate will depend on P (d; f j m) and c(:; :; :),

in general. For the choices of those quantities considered in this paper, if non-

deterministic learning algorithms are allowed, then this g can be degenerate. To

13

see this, �rst note that for any four learning algorithms given by P (hA j d),
P (hB j d), P (hF j d), and P (hG j d), we can write

X

(h;d);(h0;d0)

g(h;d);(h0;d0)[Ah;d � Bh;d][Fh0;d0 �Gh0;d0]

=
X

f;d

P (d; f j m)[CA(f; d)� CB(f; d)][CF (f; d)� CG(f; d)] : (9)

So choose P (hA j d) and P (hB j d) 6= P (hA j d) so that CA(f; d) = CB(f; d).

(Recall the example of of such a case presented above.) Then CA(f; d)�CB(f; d) =

0 and therefore the inner product between [CA(f; d) � CB(f; d)] and any other

di�erence between a pair C(f; d)'s must equal zero. Accordingly, the inner product

between [Ah;d � Bh;d] and some other tangent vector equals zero, even though

[Ah;d � Bh;d] 6= 0. Therefore g(h;d);(h0;d0) is degenerate.

Regardless of the value of its determinant, due to its manifestly non-diagonal

nature, this new P (h j d)-based g is not Euclidean in the coordinate system we've

used to de�ne it. However this new g is necessarily at (it does not vary as one

moves over the underlying manifold), just like the g for the case where M consists

of vectors C(f; d). In general, regardless of our choice of underlying manifold, to

have that manifold not be at the distance between two learning algorithms ~A

and ~B cannot be uniquely �xed by the di�erence ~F � ~A � ~B. For example, if

the distance varies with changes to ~A that leave ~F unchanged, then in general

the manifold is not at. Generically, such non-atness accrues to information-

theoretic metrics like those discussed earlier in this paper.

5 Discussion and Future Work

It is well-known that geometry can be applied to information theory, and that

the generalization performance of any single non-parametric supervised learning

algorithm, even a non-parametric one, is governed by an inner product formula [11,

10]. In addition, whereas the NFL theorems and associated Bayesian machinery

provide us with the mathematics governing the generalization performance of

any single learning algorithm considered in isolation, little is currently known of

the mathematics relating pairs of learning algorithms (cf. discussion of \head-

to-head minimax distinctions" between algorithms in [10].) Accordingly, it is

natural to investigate what geometric structure governs the relation between pairs

of supervised learning algorithms.

In this paper it is shown that if one is provided with a loss function, that func-

tion naturally de�nes a metric over the space of supervised learning algorithms.

14

Intuitively, this metric measures the fraction of targets for which the di�erence in

the expected performance of the two algorithms di�ers signi�cantly.

Bounds on the value of this metric are then calculated for the case of binary

outputs and 0-1 loss. These bounds establish that any two algorithms are almost

exactly identical. In particular, even for small input spaces and training sets,

for less than 2e�50 of all targets will the di�erence in expected generalization

performance of any two algorithms exceed 1%. Analogously, for a uniform prior

over targets, for fewer than 2e�50 of all training sets will the di�erence in posterior

generalization error exceed 1%.

Intuitively, these results reect the fact that the set of targets that appear

\random" with respect to the two algorithms always swamps the set of targets

that appear to have some structure. This is almost intuitively obvious when (for

example) the two learning algorithms are the rules (always guess the input-output

function h1 = all 1's) and (always guess h2 = all 0's) | the vast majority of targets

have about as many 0's as 1's. What's less obvious is that there is always such

a \random ... swamping" set of targets for other not so divergent hi, and even

for learning algorithms whose guessed hypotheses vary | perhaps wildly | with

varying training sets.

The bounds calculated in this paper can also be viewed as providing us with

(usually severe) restrictions on the probability distribution over targets, and there-

fore as providing us with (usually a large amount of) information concerning tar-

gets. As an example the simple English phrase \I expect that algorithm A will

perform with an accuracy of at least 75%" conveys 20,000 bytes of information

concerning the target, in that it says that the target must support a di�erence in

generalization performance between A and the algorithm that always guesses A's

opposite of at least 50%.

Posit however that we are given a description of the target, like \the target is

well-described by a shallow decision tree", which together with our prior knowl-

edge leads us to conclude (rather than merely presume) that A will perform with

an accuracy of at least 75%. For this to happen we will usually have information

concerning the relation between f and many other algorithms besides A and its

opposite. One would expect that all that information far exceeds the original

20,000 bytes.

In addition to investigating this hypothesis, there are a number of other ways

the work in this paper can be extended. Some of these are mentioned above in

the introduction. As an example of another kind of extension, consider the case

of the two learning algorithms A � \always guess h1" and B � \always guess h2"

for two �xed hypothesis input-output functions h1 and h2. Then the value of the

15

target for that set
 of those inputs x where h1 and h2 agree are irrelevant as

far as generalization performance is concerned. Then there are two f(X n dX n

that maximize the (Lp-based) metric distance between the algorithms: f = h1,

and f = h2. Future work involves extending this kind of reasoning to situations

where there are many hi, and the two algorithms choose among the hi based on

who agrees most with the training set (except that when there are ties they use

di�erent tie-breaking schemes). It may be that in certain broad scenarios the

di�erence in the performance of two such algorithms is maximized for f equal to

one of the hi, just as for the case of learning algorithms based on only two hi.

As an example of the implications of this, say we have such a scenario, and are

training by picking whichever of a pre-�xed set of neural nets agrees most often

with the training set. Then it would follow that tie-breaking |which neural net

you pick out of the set of nets all agreeing equally often with the training set| will

have the most e�ect on expected cost if the target is itself one of those candidate

neural nets.

Given a loss function and associated metric, one can also investigate issues

like how distant from one another a set of learning algorithms should be for best

performance when a meta-technique is used either to choose among them (e.g., as

in cross-validation) or combine them (e.g., via ensembles, or stacking). This can

be done either for a metric based on the at P (f) implicitly considered here or for

an informative P (f). One can also cluster currently popular learning algorithms,

and perhaps determine something of the \islands" in algorithm space where the

learning algorithms human being use tend to lie.

Given instead a full bilinear �eld over a manifold (i.e., a di�erential geometry

metric), one can bring all of the machinery of di�erential geometry to bear on

the topic of learning algorithms. For example, one can consider geodesics through

the space of algorithms, and investigate how much the modi�cations to learning

algorithms implemented by various meta-learning techniques (e.g., the setting of

a hyperparameter via cross-validation) veer from such geodesics. In other words,

one can investigate how much curvature is associated with the paths through

algorithm-space of such meta-learning.

Perhaps most importantly though, the results of this paper spotlight a glaring

gap in current understanding of the mathematics of supervised learning. By NFL,

no supervised learning algorithm can be justi�ed without a priori assumptions con-

cerning the prior P (f). In particular, this is true of boosting [3], support vector

machines [4], bagging [2], stacking [1], cross-validation, and similar currently pop-

ular techniques. Indeed, by the results of this paper, the widespread popularity

of those techniques implicitly reects an extremely large amount of information

16

imputed to the prior. (For some of those techniques, like cross-validation and

boosting, the information is even more nuanced, concerning not just the prior but

its relationship to the learning algorithms we humans tend to construct.) Yet to

date, essentially none of this putative prior knowledge has formally codi�ed.

Phrased di�erently, we act as though we have far more prior knowledge concern-

ing learning scenarios, of a far more sophisticated sort, than that going into the

usual mundane choices for P (f), like \I believe the target is likely to be smooth",

\has relatively few leaves", \has small coding length" or some such. Rather than

in such forms, our extra information is implicit, being contained in our presumed

knowledge of what learning techniques (and meta-techniques) work in the real

world.5 Clearly, it is imperative that this prior knowledge be accessed and then

exploited to get maximal performance of our learning algorithms.

As an example of what form such an exploitation could take, say we start with

the prior assumption that cross-validation would work well at choosing among a

particular (!) set of candidate algorithms fAig. More precisely, given some real-

world training set at hand d and (unknown) underlying f that generated d, we

might assume that the algorithm chosen by using cross-validation on d and fAig,
A0, generalizes from d better than does the worst-performing of the algorithms in

fAig. Now by the NFL theorems and the results of this paper, such an assumption

cannot hold in general; for it to be valid, P (f) must be (severely) restricted in

some way. To date, nobody has even elaborated the general form such a restriction

would take. Yet given the near-universal agreement that cross-validation works

very well in the real world (i.e., works well with our favorite learning algorithms,

on the real world's actual P (f)), one could argue that we have greater faith in

the implicit restrictions placed by cross-validation on P (f) than in any of the

currently popular explicit restrictions on P (f), like favoring f 's representable as

small trees. (Indeed, one often uses cross-validation to determine whether a bias

towards small trees is appropriate!) If we could make those restrictions on P (f)

of cross-validation's explicit, then using them should allow us to construct a new

Bayes-optimal algorithmB that not only outperforms any of the original fAig, but
by being Bayes-optimal, outperforms cross-validation as well. More ambitiously,

one might even try to combine the restrictions on P (f) associated with many

di�erent learning techniques (i.e., not restrict attention to cross-validation), and

thereby produce an algorithm which outperforms any of those techniques.

5Despite Bayesian lore to the contrary, one need not use the prior P (f) to extend knowledge

of a likelihood P (djf) into a full-blown posterior; a prior is not required to do Bayesian inference.

Certain kinds of knowledge concerning the performance of certain learning algorithms can be

used instead. See [13].

17

Astoundingly though, whether in regard to cross-validation or any of the other

currently popular non-Bayesian (meta)learning techniques, little to nothing is

currently known about what P (f) must be for that (meta)learning technique to

perform well. (See [6, 9] for some preliminary work in this area.) Yet it is hard

to imagine a more crucial issue in supervised learning.

Acknowledgements: I would like to thank Charlie Strauss for helpful comments.

References

[1] L. Breiman. Stacked regression. University of California, Dept. of statistics,

TR 367, 1992.

[2] L. Breiman. Bagging predictors. Univesity of California, Dept. of Statistics,

TR 421, 1994.

[3] L. Breiman. Bias, variance and arcing classi�ers. University of California,

Dept. of Statistics, Technical Report, 1996.

[4] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classi�cation (2nd ed.).

Wiley and Sons, 2000.

[5] Choquet Bruhat et al. Analysis, Manifolds and Physics. North-Holland,

1982.

[6] R. Vilalta et al. ICML 2000 workshop on What Works Well Where. 2000.

[7] Jakob Hansen. Combining predictors. PhD thesis, Dept. of Computer Sci-

ence, University of Aarhus, 2000.

[8] Robert Wald. General Relativity. University of Chicago Press, 1984.

[9] D. H. Wolpert. Bayesian back-propagation over i-o functions rather than

weights. In Advances in Neural Information Processing Systems VI. Morgan

Kau�man,, 1994.

[10] D. H. Wolpert. The lack of a prior distinctions between learning algorithms

and the existence of a priori distinctions between learning algorithms. Neural

Computation, 8:1341{1390,1391{1421, 1996.

[11] D. H. Wolpert, editor. The Mathematics of Generalization. Addison-Wesley,

New York, 1996.

18

[12] D. H. Wolpert. On bias plus variance. Neural Computation, 9:1211{1244,

1996.

[13] D. H. Wolpert. Reconciling bayesian and non-bayesian analysis. InMaximum

Entropy and Bayesian Methods 1993. Kluwer Academic Press, 1996.

19

